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ABSTRACT

We disprove a conjecture of A. Koldobsky asking whether it is enough to
compare (n — 2)-derivatives of the projection functions of two symmetric
convex bodies in the Shephard problem in order to get a positive answer
in all dimensions.

1. Introduction

Sections and projections of convex bodies have been actively studied for many
years. Although their properties exhibit certain duality, there is no clear picture
explaining this. The following two famous problems ask similar questions about
sections and projection. Let K and L be origin-symmetric convex bodies in R™.
The Busemann-Petty problem asks whether the assumption that all central
hyperplane sections of L have smaller volume than those L implies that K has
smaller n-dimensional volume. Its counterpart for projections is known as the
Shephard problem. It asks whether

vol,,_1 (K|0+) < vol,,_1(L|6+)
for all § € S”~! implies that

vol, (K) < vol,(L).

* The author was supported in part by the European Network PHD, FP6 Marie
Curie Actions, RTN, Contract MCRN-511953
Received March 28, 2007 and in revised form April 26, 2007

221



222 VLADYSLAV YASKIN Isr. J. Math.

The latter problem was solved independently by Petty [P] and Schneider [S1],
who showed that the implication is correct only if n = 2. The solution to the
Busemann-Petty problem was settled through the efforts of many people (for
historical details see [K3, pp. 3-7]) and it turned out that the answer to this
problem is affirmative only in dimensions n < 4.

A unified approach to these problems was given by Koldobsky, Ryabogin and
Zvavitch [KRZ1], [KRZ2], see also [K3, Sections 5.1 and 8.4]. They showed that
these two problems are essentially of the same nature, if treated with the help
of Fourier analysis.

Koldobsky [K2] and Koldobsky, Yaskin and Yaskina [KYY] considered a mod-
ification of the Busemann-Petty problem, which gave a positive answer to the
problem in all dimensions. Namely, for an origin-symmetric convex body K in
R"™, define the section function

Sk (€) =vol,_1(KNeL), ¢esn

where &1 is the central hyperplane in R™ orthogonal to &, and extend Sg from
the sphere to the whole R™ as a homogeneous function of degree —1. Let A
be the Laplace operator on R™. It was proved that for two origin-symmetric
infinitely smooth convex bodies K, L in R™ and o € R, oo > n—4, the condition

(1) (=A)285(€) < (=A)Y2SL(€), forall &eS™t

implies that vol, (K) < vol,,(L), while for a < n — 4 this is not necessarily true.
Koldobsky conjectured that a similar result must hold for projections, with
« = n — 2 being the critical value after which the answer becomes affirmative.
This conjecture was based on the following. First of all, for all origin-symmetric
convex bodies ||z " is a positive definite distribution, see [K3, Section 4.2].
In addition, the authors of [KYY] showed that |lz|||z|;" ™ is also positive
definite, which corresponds to the borderline case of the result mentioned above.
(In general, ||z|| <" TP*% - 2|5 is positive definite for a certain range of p). One
can see that all these functions have a common property: they are homogeneous
of degree —n + 3, and therefore it seemed plausible that ||z||x|z|5 "2 should
also be positive definite. (This would correspond to the case p = n — 2 above).
However, in [KYY] the authors were unable to extend the proof to this case.

n+2

Here we prove that ||| x|z|3 "~ is not necessarily positive definite, giving a

negative answer to the conjecture of Koldobsky. This seems to be one of not
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many examples where the direct analogy between sections and projections does
not hold.
For other generalizations of the Shephard problem see [B], [GZ], [RZ].

ACKNOWLEDGMENTS. The author would like to thank Professors Paul Goodey
and Alexander Koldobsky for fruitful discussions.

2. Convex Geometry and the Fourier transform

The standard references here are the books by Gardner [G], Schneider [S2]
and Koldobsky [K3]. Let K be an origin-symmetric star body in R™. The
Minkowski functional of K is defined as

|z]|k = min{a >0: 2 € aK}.

The function px () = ||z| " is called the radial function of K. If z € S"~,
pi (z) is the distance from the origin to the boundary of K in the direction of
x.

We say that a body K is infinitely smooth if its radial function px restricted to
the unit sphere S™~! belongs to the space C°°(S™~ 1) of infinitely differentiable
functions on the unit sphere.

Throughout the paper we use the Fourier transform of distributions. The
Fourier transform of a distribution f is defined by { 1, o) = {f, q3> for every test
function ¢ from the Schwartz space S of rapidly decreasing infinitely differen-
tiable functions on R™. For any even distribution f, we have (f)" = (2m)"f.

In particular, we are interested in the Fourier transform of homogeneous
functions on R™. We will need the following version of Parseval’s formula on
the sphere proved by Koldobsky (see, e.g., [K3, p. 66]).

LEMMA 2.1: If K and L are origin-symmetric infinitely smooth star bodies in
R” and 0 < p < n, then (||z|*)" and (||z| ;" *?)" are continuous functions on
Sn=1 and

/ (l2ll?) " € (lall," )" (§)de = (2m)" / o2l
Ssn—1 J—

Remark: The preceding lemma was formulated for Minkowski functionals, but
in fact it holds true for arbitrary infinitely differentiable even functions on the
sphere extended to R™\ {0} as homogeneous functions of corresponding degrees.
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We say that a distribution f is positive definite if its Fourier transform is
a positive distribution, in the sense that ( f , @) > 0 for every non-negative test
function ¢.

The next result from [GKS] will be our main tool in determining whether a
homogeneous function represents a positive definite distribution, see also [K3,
p. 60].

THEOREM 2.2 (Gardner, Koldobsky, Schlumprecht): Let K be an infinitely
smooth origin-symmetric star body in R™, and let k € NU {0}, k # n — 1.
Suppose that & € S”‘l, and let Ag ¢ be the corresponding parallel section

function of K: Ag ¢(z me(L o= 4.
(a) If g is not an 1nteger —k—1<q<k, then
n+q+1 _ m(n—q— 1)
(i) = sty
22 k—1 Skl
. /oo Axe(:) = Ac(0) = A OF — = A Oy
g 2.
0
(b) If k is an even integer, then
—n k
(l2ll" )M (E) = (~1)*x(n — k = 1) A(0).
(c) If k is an odd integer, then
("N E) = (=) FFD22(n — 1 = k)k!
22 k—1 k—1
[ Are(®) — Arel0) — A (0F — -~ A Oy
0 Skl z

Here Ag()g stands for the derivative of the order k and the Fourier transform is
considered in the sense of distributions.

Remarks: (i) The previous theorem implies that for infinitely smooth bodies
the Fourier transform of ||z|| =79+ restricted to the unit sphere is a continuous
function (see also [K3, Section 3.3]).
(i) If £ = 0, then part (a) of the theorem reads as follows. For —1 < ¢ < 0,
—n+q+1 — 7T(7’l —q— 1) / 9 q—1 9 —n+q+1d9
(el = ey [ 10,017 1ol

n+q+1)

In particular, if —1 < ¢ < 0, then (||z| % is a non-negative function on

the sphere for any star body K.
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An extension of Theorem 2.2 to the case when k = n—1 was given in [KKYY].

THEOREM 2.3: Let K be an infinitely smooth origin-symmetric star body in
R". Extend Agggl)(()) to a homogeneous function of degree —n of the variable
£ € R*\ {0}. Then (In|| - ||x)" is a continuous function on R™ \ {0} and

=D (- ey ),

as distributions (of the variable §) acting on test functions with compact support

(2) AR (0) =

outside of the origin. In particular,
i) if n is odd

(Inlz] )" (€) = ()™ D2xAQ D (0), € e R™\ {0},
ii) if n is even, then for £ € R™ \ {0},
(In [l2]x)" (€)
aﬁ/wAKdaAKamAkgmé~~Agﬂ@ﬁ%%
0

z n

dz,
where a, = 2(—1)"/?**(n —1)!
The support function of a convex body K in R"™ is defined by
h = R™.
K(r) =max(z,§), x €

If K is origin-symmetric, then hg is the Minkowski norm of the polar body K*.

Let vol,_1(K|61) denote the (n — 1)-dimensional volume of the orthogonal
projection of the body K onto the hyperplane orthogonal to 8. The following
is the well-known Cauchy formula [G, p. 361]:

1

vol, 1 (K|0+) = 3 /SM |(&,0)|dSn—1(K, &),

where dS,,_1(K, &) is the surface area measure of K ([G, p. 351]). A convex
body K is said to have a curvature function fy, if its surface area measure

dSn—1(K, &) is absolutely continuous with respect to Lebesgue measure do,,—1
on S"! and S (K.
d n—1 Ka . 1 —1
e Sl Je L (S,
e O G
If K is an infinitely smooth body with positive curvature, then fx () is the
reciprocal of the Gauss curvature at the boundary point with unit normal 6,

see [S2, p. 419]. Abusing notations, we will also denote by fx the extension of
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fr to R™ as a homogeneous function of degree —n — 1. Koldobsky, Ryabogin
and Zvavitch [KRZ1] proved that if a body K has a curvature function, then

(3) vol, 1 (K|0+) = flf,}(e), for all § € ™1,
s

Let A be the Laplace operator on R™. The fractional powers of the Laplacian
of a distribution g are defined by

(4) (—A)*/2g = (lzl39(x))",

1
(2m)»
where the Fourier transform is considered in the sense of distributions, and |z,
stands for the Euclidean norm in R™. Using the connection between the Fourier
transform and differentiation, one can see that for an even integer o and an even
distribution ¢ this definition gives the standard Laplacian applied a/2 times.

If K is an infinitely smooth body with positive Gauss curvature, then fgx is
an infinitely differentiable function on the sphere (because the Gauss curvature
is the determinant of the Weingarten map, which is infinitely differentiable
and non-singular in our case, see [S2, pp. 104-109]). Consider the projection
function vol,,_1(K|(-)*) and extend it from the sphere to R" as a homogeneous
function of degree 1. Using (3) and (4), we get

(5) (=8 ol 1 (K10*) = = (lal3 fic ()" (6).

Since |-|$ fx is infinitely differentiable, (—A)*/2vol,,_; (K|(-)*) is a continuous
function on the sphere ([K3, Lemma 3.16] or remark (i) after Theorem 2.2).

3. Main results
Let us start with a result in the positive direction.

THEOREM 3.1: Letn < a<n+1. Let K, L CR™, n > 3, be infinitely smooth
origin-symmetric convex bodies with positive Gauss curvature such that

(=A)*2vol, 1 (K|6+) > (=A)*/?vol,,_1(L|6+), for allf € S 1,
Then vol,,(K) < vol,(L).

Proof. Recall the following formula [G, p. 354]

vol, (L) = /S  he(O)7(0)d6,

n
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where hy and f;, are the support function and curvature function of the body
L correspondingly. Therefore, using the fact that hy, = || - ||+ we get,

vol, (L) = %/SWI 161~ fr.(6)dO

1 —a «
—/ 101211011 L+ 1615 f1.(6)do.
n Jgn—1

Since n < a < n + 1, remark (ii) after Theorem 2.2 implies that the Fourier
transform of |z|; “||z| L~ is a non-negative function on the sphere. Applying the
spherical version of Parseval’s formula (Lemma 2.1), we get

- /Sn1(|$|2“|xIIL*Wf)(IzleL(z))A(g)dg

—- /S (Jel5 ™ 2]l 1) () (— A)*/2vol, s (LIS )de

n—1

>_ T / (el32 1]l -) () (— A)*2vol, 1 (K€ )de

(277)71771 gn—1
1 1
[0l fe @@= [ hu(o)c(o)as
:%(K’L)a

where V1 (K, L) is the mixed volume, also denoted by V(K,..., K, L), see [G,
p- 353], [S2, p. 275].

Therefore, we have V4 (K, L) < vol,(L). Applying Minkowski’s first inequality
[S2, p. 317] we get

vol, (L) vol, (K) ™ < Vi(K,L) < vol, (L),
and hence

vol, (K) < vol,(L). |

Remark: Comparing the previous theorem with the original Shephard problem,
one can observe that the inequality for the projections gets reversed. This
happens because the answer to Shephard’s problem is affirmative if L is a polar

projection body, that is the Fourier transform of || ||+ is a negative distribution
outside of the origin, see [K3, pp. 155-160]. On the other hand, as we have seen,
if this norm is multiplied by the Euclidean norm to the appropriate power, then

the Fourier transform of || “||z| L+ becomes a positive distribution.
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LEMMA 3.2: Let n —2 < a < n, a # 1. Then there exists an origin-symmetric
convex body L in R™, n > 3, such that |z|;“||z||r is not a positive definite
distribution.

Proof. First, consider the case n —2 < o < n. For a large N > 0 let L be an
ellipsoid with the norm:

lollz = (o + - +af g + Naf) V2,
Define a star body K C R™ by the formula:
pr(0) =pp " (), 08",

where pg and py, are the radial functions of the bodies K and L correspondingly.
One can see that

—a —a/(l—a 1/(1—a)\ —a+1 —a n
2|z Nl = (Jaly 2l 7) T = ezt for all z € R™\ {0}

Using Theorem 2.2 with ¢ = n — «a € (0,2) we get

(lallz ) = — oD / T U (1) — Arce(0)dt

I'(a —n)cos
where the case n —a = 1 is understood in the sense of part (c) of the aforemen-
tioned theorem.

Note that I'(a — n) cos @ < 0for a € (n—2,n), where & = n—1 is again
understood in terms of the limit, so we need to prove that for some &

(6) /OOO e (A e (t) — Ak e(0))dt > 0.

Let ¢ be the direction of the z,-axis. Let [—to, o] be the support of Ag ¢(t),
then

@
/ 1O (A (1) — Agce(0))dt
0

t() o0
:/ t_"+a_1(AK7§ (t) - AK,g(O))dt - / t_"-i_a_lAK’g (O)dt
0

to Ak (0
:/ O (AR e (1) — Ak e(0))dt — L()t(?"”-
0

Introduce the following coordinates on the sphere S*~!. Every 8 € S"~! can
be written as

0 =cos¢p-(+sing-&,
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where —7/2 < ¢ <7/2and ¢ € "INt

Since we are interested in the sections of K perpendicular to &, its axis of
revolution, by abuse of notation we will denote by px (¢) the radial function of
those # € S"~! that make an angle ¢ with the plane £*. Explicitly it equals

pic(¢) = (cos® ¢ + N sin® ¢)!/2=2),

One can check that t = sin¢ - px(¢) is an increasing function of the angle
¢ € (0,7/2), therefore all the sections of K by hyperplanes orthogonal to &
are (n — 1)-dimensional disks. Moreover, one can see that tg = N M%?, which
implies that the last term in (7) approaches zero as N tends to infinity.

It will be more convenient to work with ¢ instead of t. Ax ¢ as a function of
¢ looks as follows.

Ak ¢(t(¢)) =wn—1(cos ¢ - pr(¢))"
:wn71(COS (;5)n_1 (COS2 ¢+ N sin? (;S)JTilz,

where w,,_1 is the volume of the unit (n — 1)-dimensional Euclidean ball.

Now consider the integral term from (7). Making change of the variable
t =sin¢ - (cos? ¢ + Nsin? ¢)/(22=2) we get
(8)

/ ' O (A (8) — Age(0))dt
0

—nta—1

/2
=W 1 / (sin @) "1 (cos? ¢ + N sin® ¢) 2a-2
0

X ((cos $)" ! (cos® ¢ 4+ N sin® ¢)2"Tilz _ 1)

x (cos® ¢+ N sin® gZ))Tlffl(cos3 ¢+ (N+

11 ) cos ¢sin? ¢)do.

Now we want to find the intervals where the integrand is positive or negative.

o —

So we need to solve the equation

(cos )" (cos? ¢ + N sin? ¢);a—:12 -1=0,
which is equivalent to
(9) (cos ¢)** + N(cos ¢)** ?sin® ¢ = 1.

By showing that the function in the left hand side is first increasing and then
decreasing to zero, one can see that the equation has two roots on the interval
[0,7/2]. One root is obvious: ¢1 = 0. In order to determine the second root
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¢2, note that the maximum of the function in question is achieved when ¢ is
roughly arccos /1 — 1/, assuming N is large. Therefore (9) together with the
inequality ¢ > arccos+/1 — 1/« gives

N (cos ¢2)*~2 < C(a),

and hence ¢ = 7/2 — O(Nﬁ).

Now break the integral (8) into two parts according to where the integrand
is positive or negative. It is negative on the interval (7/2 — O(Nﬁ),ﬂﬂ)
and one can easily show that the absolute value of the integral here is bounded
above by

CON 52"

which approaches zero as N tends to infinity.

In order to estimate from below the positive part of the integral (8) it is
enough to consider the interval [r/4,7/3]. One can check that when N is large,
the integral has order

CN'/2,
which approaches infinity as N gets large. The inequality (6) follows.
Now consider a = n — 2. In this case Theorem 2.2 gives

(2l z* )" (6) = 7(1 = @) A £ (0) < 0.
The latter inequality follows by direct computation. |

The previous Lemma says nothing about the case when o = 1 (and therefore
n = 3). It may seem that the right analog would be to analyze the sign of
(|z|3 H|z]| L + In|x|2)”. But in fact, as one will see later, the following result is
needed.

LEMMA 3.3: There exists an origin-symmetric convex body L in R3, such that
the Fourier transform of

Js2 01| a0
Ar(1+17(1))

is not a positive distribution outside of the origin. Here I is the derivative of

Jlz i — In |z[2

the Gamma-function.

Proof. For N > 0 large enough consider the following planar curve defined in
polar coordinates by

(10) p(@) = cos™ 6.
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Take only that part of the curve where the angle ¢ belongs to the interval

[ — arcsin arcsin

1 1
VN +1 VN +1 }
One can check that the end-points of the interval correspond to the extreme
values of the y-coordinate (altitude). Rotate this arc around the y-axis and
then attach two disks at the top and bottom to get a closed surface. Denote by
L the convex body bounded by this surface. Consider a star body K given by
the formula

101l = exp([0]l2), 6 €S>
Therefore the radial function of K equals
pic(0) = exp(—pr'(9)), 0¢€ S
One can also see that
In [zl i = |of5 allz + Infale, @ € R\ {0}.

Let € be the direction of the axis of revolution of L. Since n = 3, by Theorem
2.3 we have

(In [lz]|x)" (€) = Ak ¢(0).
(In fact, this formula can only be applied if the body is smooth enough, but let
us ignore this problem for a while and address it at the end of the proof.)

If we denote by p (¢) the radial function of those 6 € S? that make an angle
¢ with the plane £, then

Ax¢(9) = m(cosd - pr(9))? = weos® ¢ - exp(=2p7 " (9)).
Using that for small ¢ the function py, is given by formula (10) we get
(11) Al ¢(0) = —2me (N - 1).

On the other hand, from the construction of the body L it follows that L has
smallest radius in the direction of &. Therefore for all § € S2,

. C
pr(0) > pr(§) = (COSN ¢sin ¢) |¢:arcsin = = \/Nil—ﬂv

which implies
[ 1ol < covm T
SZ

for some constants C7 , Co > 0.
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Also notice that part (i) of Theorem 2.3 gives
(In|z|9)"(0) = =272, for all @ € S

Therefore, we have

L Sz 16119 4
(el llelle = g2y 1mlel2) ©

1+T'(1) + & [q 0] db A
= (mllefx - it o)) (€)
1+ T'(1) + £ [g2 [10]] 20
= —2ne 3(N — 1) + 272 dr /S
me (N -1+ T+ 17(1)

< —2me (N -1)+CVN +1<0,

for N > 0 large enough.
Formally the above computations are not quite legitimate since L is not in-
finitely smooth. But one can approximate L by an origin-symmetric infinitely

smooth convex body without loosing the sign in the last inequality. Specifically,

1
N+1°
This operation will not affect (11). On the other hand one can also assure that

one has to smooth out the body in a small neighborhood of ¢ = arcsin

Js2 110]|Ldf does not change much. &

THEOREM 3.4: Let n — 2 < a < n. There are convex origin-symmetric bodies
K,L CR", n > 3 such that

(12)  (=A)%vol,_1(L|0+) < (—A)¥%vol,_ 1 (K|0F), forall§ e S™L,

but
vol, (L) < vol, (K).

Proof. First assume that o # 1. Lemma 3.2 guarantees that there exists an
ellipsoid K*, such that (|z|; *||z| x~)"(§) < 0 for some direction . Let K be
the polar body of K*. Since K is again an ellipsoid, its curvature function fx
is well-defined.

Let Q = {6 € S" ' : (Jz|3%| || x-)"(0) < 0} and let v € C®(S""!) be
a non-negative even function supported in 2. Extend v to a homogeneous
function |x|3~“v(x/|z|2) of degree 1 — a on R”. By [K1, Lemma 5] the Fourier
transform of 2|3~ “v(x/|x|2) is equal to |z|; " T g(x/|x|2) for some function
g € C>°(S™71). Choose an € > 0 small enough and define

fr(z) = fr(@) +elaly " g(z/]al2) > 0.
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By Minkowski’s existence theorem [G, p. 356] there is a convex origin-symmetric
body L € R™ with such defined curvature function. Now multiply both sides
by |z|§ and apply the Fourier transform to get

—m(=A)*"2vol, 1 (L|6F) = —n(=A)*2vol,, 1 (K|6F) + (21)"ev(6)
> —m(=A)*?vol, 1 (K|64).

On the other hand,
[l el Aol 1 (110
- ”/n,l(lxlga”xHK*)A(9)(—A)a/2vo1n_1(K|9i)d9
s @nre [ (el lale) 00)09
<o [ G el 080 vl (10

where the last inequality follows from the fact that v is supported in the set,
where (|z]3 ||z x+)" < 0.

Using the argument from Theorem 3.1 we get that
vol, (L) < vol, (K).

In order to prove the remaining case when o = 1, we need two lemmas. The
following lemma is from [YY, Lemma 3.3], see also [KKYY].

LEMMA 3.5: Let K be an infinitely smooth origin-symmetric star body in R™.
Then

(13 Wlelx =~ [ @] (n el €€ +

(2m)
where

o 1, 11"(n/2)
Cx = e /SH Il e = 52T (1/2) + 5 s

Moreover,

(14) [ el (e = —n.

The following result is from [YY, Lemma 3.7]. It is not stated in this form
there, but follows from the proof.
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LEMMA 3.6: Let K be an origin-symmetric star body in R", then the Fourier
transform of ||z|| " is a continuous function on R™ \ {0}, which equals

(15) (el €)= [ 101" (1) =1 (6.} ).

Now we are able to prove the remaining case of the theorem, when o = 1
(and therefore n = 3). By Lemma 3.3 there exists an infinitely smooth origin-
symmetric convex body K* in R? such that for some ¢ € S?

A
1 fs2 10| &~ O
] 0.
(1ol ol = 32 el ) (©) <
Let K be the polar body of K*. By approximation we can assume that K is

infinitely smooth with strictly positive curvature, see [S2, pp. 158-160].
Let

A

Lo e ol @) <o)

Q={0eS*: (|z3" e
e s (lol el - 320 e

and let v € C°°(S?%) be an even function, 0 < v < 1, not identically equal to
1, and such that v =1 in S? \ Q. We will also use the fact that I"(1) > —1 to
impose an additional condition on v:

1

— Inv(8)d0 = —1 —T'(1).

5 [ o (1)
Note that the latter equality can be written in the form
(16) C, +T'(1) =0,

where C,, is the constant from Lemma 3.5.

Extend v from the sphere to R? as a homogeneous function of degree 1, and
denote this extension also by v. By Theorem 2.3 the Fourier transform of In v(x)
outside of the origin is equal to |z|; 3g(x/|x|2) for some function g € C(S?).
Choose an € > 0 small enough and define

fu(@) = frc(x) = elaly *g(x/|2l2) > 0.

By Minkowski’s existence theorem there is a convex symmetric body L C R?
with such defined curvature function. Now multiply both sides by |z|]s and
apply the Fourier transform to get

—m(=A)*2volp(LIET) = —m(=A)* Pvola(KI€Y) — (2m) e (|2l P g/ |2]2))" (€)
—m(=A)* voly(KIE),

v
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where the last inequality comes from the following calculations, based on Lem-
mas 3.6 and 3.5.

(1l sta/ 1) (©) = [ o@)r () = In 6. €))ds
= [ tnule))" O)'(1) w](0.9))a0

~rPT(n) - [ (nv@)" )]0,
S2
= —(2m)*T'(1) + (2m)*(Inv(€) — C,) = (27)* Inw(€) < 0.

On the other hand,

=3 [ 10012000 = 5 [ 101 (1(0) = co(0))a0

If we can show that [, [|0]|x~g(#)d6 > 0, the statement will follow from

Minkowski’s first inequality. = exp||0|| k-~ for all § € S%. By Lemma

3.5 we have

1
6]k = [|f]lar = — =7 /SZ In |(6, )| (In ||| ar) " (§)dE + Cr,

(27)

where
1 1
17 Cy = — In ||6||psdf +1 = — 0| rc+df + 1.
a7) = [ wlolas+1= o [ 16lledo+
Analogously,
1

6l = ~ g5y [ 110 €)]nlela) € + 1.

Let us denote

Oy +17(1)
1+ Iv()
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Then
[ 16lc-g(6)ae
S2

= [ 00l ~ A 10) g 0)a0
S2

__ (2717)3 /S </S I |(0,€)] (In ]| az — Aln|e]2)” (§)d£) 9(6)d6

+(Cy — A)/ 9(6)do.

S‘Z

Reversing the order of integration in the first integral and then adding and
subtracting an appropriate quantity, we get

L ! —1n n||r — n|r A
— oo [ ([0 = wl0.0) 60)as ) Gn s — Ain ol €1

- ]
') .
ot [, (o010 el = Aalal @t (Car =) [ at0)00

Formulas (15) and (14) applied to the first and second integrals correspondingly

give
:(2%)3 /32 (|23 %g(x/|212))" (€) (i |l ar — An[z]2)" (€)de
+ (1) (1= A) /S2 g(0)dd + (Crr — N) /S2 g(0)de.
Using that
(215 %g(x/|2]2))" (€) = (2m)% Inw(¢)
and
I(1)(1 = A) + (Cu = A) =0,
we get

15 [ 16leg®)d0 = [ 1m0 nllallas ~ Anfala)” (€)c

Recall that

ﬁ fs2 10l k=d6 + 1 4+ T7(1)
1+17(1)

In|z(lar = An fafz =[aly ]| x- +Inlz)s —

 Je 1618
Ar(1+17(1))

1I1|IL‘|2

=laly 2l - In fz]5.
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Therefore, (18) implies
[ Wlc-gte)ds > o
SQ

since In v is negative, where

A
1 Js 0]l c-dO
,— Js2 WIK-4Y
(|x|2 [l % Ar(1+ (1)) n |z[o

is negative, and zero everywhere else. |

Remark: The aim of Theorem 3.4 is to show that condition (12) is inconclusive.
As we have seen, there are bodies for which (12) holds, but vol,, (L) < vol, (K).
Let us remark that one can easily find two bodies for which (12) holds, but
vol, (L) > vol,(K). It is enough to take two Euclidean balls. This is obvious
for a > 1, but probably some explanations are needed for the case « = 1 (and
n=3).

Let B be a Euclidean ball in R? with curvature function fg(6) = C, for all
6 € S2. Then by (5) and (15) we have

(~8)'/2v0lo(BIE ") = ~—(Jela fi(#))"(6) =~ (jalxClalz )" (0)

= [ (o -mie.or)e

The latter integral is computable and after routine calculations one gets

(—A)Y%voly(BleL) = —4C(I'(1) + 1) < 0.

Therefore, if we take two Euclidean balls B, and Br with radii r < R, then
fB,. < fB, and therefore

(—A)2voly(Brléh) < (—A)2vola(B,[¢1),

but
volg (BT) < volg (BR)
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