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ABSTRACT

We disprove a conjecture of A. Koldobsky asking whether it is enough to

compare (n − 2)-derivatives of the projection functions of two symmetric

convex bodies in the Shephard problem in order to get a positive answer

in all dimensions.

1. Introduction

Sections and projections of convex bodies have been actively studied for many

years. Although their properties exhibit certain duality, there is no clear picture

explaining this. The following two famous problems ask similar questions about

sections and projection. Let K and L be origin-symmetric convex bodies in R
n.

The Busemann-Petty problem asks whether the assumption that all central

hyperplane sections of L have smaller volume than those L implies that K has

smaller n-dimensional volume. Its counterpart for projections is known as the

Shephard problem. It asks whether

voln−1(K|θ⊥) ≤ voln−1(L|θ⊥)

for all θ ∈ Sn−1 implies that

voln(K) ≤ voln(L).
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The latter problem was solved independently by Petty [P] and Schneider [S1],

who showed that the implication is correct only if n = 2. The solution to the

Busemann-Petty problem was settled through the efforts of many people (for

historical details see [K3, pp. 3–7]) and it turned out that the answer to this

problem is affirmative only in dimensions n ≤ 4.

A unified approach to these problems was given by Koldobsky, Ryabogin and

Zvavitch [KRZ1], [KRZ2], see also [K3, Sections 5.1 and 8.4]. They showed that

these two problems are essentially of the same nature, if treated with the help

of Fourier analysis.

Koldobsky [K2] and Koldobsky, Yaskin and Yaskina [KYY] considered a mod-

ification of the Busemann-Petty problem, which gave a positive answer to the

problem in all dimensions. Namely, for an origin-symmetric convex body K in

R
n, define the section function

SK(ξ) = voln−1(K ∩ ξ⊥), ξ ∈ Sn−1,

where ξ⊥ is the central hyperplane in R
n orthogonal to ξ, and extend SK from

the sphere to the whole R
n as a homogeneous function of degree −1. Let ∆

be the Laplace operator on R
n. It was proved that for two origin-symmetric

infinitely smooth convex bodies K, L in R
n and α ∈ R, α ≥ n−4, the condition

(−∆)α/2SK(ξ) ≤ (−∆)α/2SL(ξ), for all ξ ∈ Sn−1(1)

implies that voln(K) ≤ voln(L), while for α < n− 4 this is not necessarily true.

Koldobsky conjectured that a similar result must hold for projections, with

α = n − 2 being the critical value after which the answer becomes affirmative.

This conjecture was based on the following. First of all, for all origin-symmetric

convex bodies ‖x‖−n+3
K is a positive definite distribution, see [K3, Section 4.2].

In addition, the authors of [KYY] showed that ‖x‖−1
K |x|−n+4

2 is also positive

definite, which corresponds to the borderline case of the result mentioned above.

(In general, ‖x‖−n+p+3
K · |x|−p

2 is positive definite for a certain range of p). One

can see that all these functions have a common property: they are homogeneous

of degree −n + 3, and therefore it seemed plausible that ‖x‖K |x|−n+2
2 should

also be positive definite. (This would correspond to the case p = n − 2 above).

However, in [KYY] the authors were unable to extend the proof to this case.

Here we prove that ‖x‖K |x|−n+2
2 is not necessarily positive definite, giving a

negative answer to the conjecture of Koldobsky. This seems to be one of not
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many examples where the direct analogy between sections and projections does

not hold.

For other generalizations of the Shephard problem see [B], [GZ], [RZ].

Acknowledgments. The author would like to thank Professors Paul Goodey

and Alexander Koldobsky for fruitful discussions.

2. Convex Geometry and the Fourier transform

The standard references here are the books by Gardner [G], Schneider [S2]

and Koldobsky [K3]. Let K be an origin-symmetric star body in R
n. The

Minkowski functional of K is defined as

‖x‖K = min{a ≥ 0 : x ∈ aK}.

The function ρK(x) = ‖x‖−1
K is called the radial function of K. If x ∈ Sn−1,

ρK(x) is the distance from the origin to the boundary of K in the direction of

x.

We say that a body K is infinitely smooth if its radial function ρK restricted to

the unit sphere Sn−1 belongs to the space C∞(Sn−1) of infinitely differentiable

functions on the unit sphere.

Throughout the paper we use the Fourier transform of distributions. The

Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for every test

function φ from the Schwartz space S of rapidly decreasing infinitely differen-

tiable functions on R
n. For any even distribution f , we have (f̂)∧ = (2π)nf .

In particular, we are interested in the Fourier transform of homogeneous

functions on R
n. We will need the following version of Parseval’s formula on

the sphere proved by Koldobsky (see, e.g., [K3, p. 66]).

Lemma 2.1: If K and L are origin-symmetric infinitely smooth star bodies in

R
n and 0 < p < n, then (‖x‖−p

K )∧ and (‖x‖−n+p
L )∧ are continuous functions on

Sn−1 and
∫

Sn−1

(
‖x‖−p

K

)∧
(ξ)

(
‖x‖−n+p

L

)∧
(ξ)dξ = (2π)n

∫

Sn−1

‖x‖−p
K ‖x‖−n+p

L dx.

Remark: The preceding lemma was formulated for Minkowski functionals, but

in fact it holds true for arbitrary infinitely differentiable even functions on the

sphere extended to R
n\{0} as homogeneous functions of corresponding degrees.
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We say that a distribution f is positive definite if its Fourier transform is

a positive distribution, in the sense that 〈f̂ , φ〉 ≥ 0 for every non-negative test

function φ.

The next result from [GKS] will be our main tool in determining whether a

homogeneous function represents a positive definite distribution, see also [K3,

p. 60].

Theorem 2.2 (Gardner, Koldobsky, Schlumprecht): Let K be an infinitely

smooth origin-symmetric star body in R
n, and let k ∈ N ∪ {0}, k 6= n − 1.

Suppose that ξ ∈ Sn−1, and let AK,ξ be the corresponding parallel section

function of K: AK,ξ(z) =
∫

K∩(x,ξ)=z dx.

(a) If q is not an integer, −k − 1 < q < k, then

(‖x‖−n+q+1
K )∧(ξ) =

π(n − q − 1)

Γ(−q) cos πq
2

×
∫ ∞

0

AK,ξ(z) − Aξ(0) − A′′
K,ξ(0) z2

2 − · · · − A
(k−1)
K,ξ (0) zk−1

(k−1)!

zq+1
dz.

(b) If k is an even integer, then

(‖x‖−n+k+1
K )∧(ξ) = (−1)k/2π(n − k − 1)A

(k)
K,ξ(0).

(c) If k is an odd integer, then

(‖x‖−n+k+1
K )∧(ξ) = (−1)(k+1)/22(n − 1 − k)k!

×
∫ ∞

0

AK,ξ(z) − AK,ξ(0) − A′′
K,ξ(0) z2

2 − · · · − A
(k−1)
K,ξ (0) zk−1

(k−1)!

zk+1
dz.

Here A
(k)
K,ξ stands for the derivative of the order k and the Fourier transform is

considered in the sense of distributions.

Remarks: (i) The previous theorem implies that for infinitely smooth bodies

the Fourier transform of ‖x‖−n+q+1 restricted to the unit sphere is a continuous

function (see also [K3, Section 3.3]).

(ii) If k = 0, then part (a) of the theorem reads as follows. For −1 < q < 0,

(‖x‖−n+q+1
K )∧(ξ) =

π(n − q − 1)

Γ(−q) cos πq
2

∫

Sn−1

|(θ, ξ)|−q−1‖θ‖−n+q+1
K dθ.

In particular, if −1 < q < 0, then (‖x‖−n+q+1
K )∧ is a non-negative function on

the sphere for any star body K.
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An extension of Theorem 2.2 to the case when k = n−1 was given in [KKYY].

Theorem 2.3: Let K be an infinitely smooth origin-symmetric star body in

R
n. Extend A

(n−1)
K,ξ (0) to a homogeneous function of degree −n of the variable

ξ ∈ R
n \ {0}. Then (ln ‖ · ‖K)∧ is a continuous function on R

n \ {0} and

(2) A
(n−1)
K,ξ (0) = −cos(π(n − 1)/2)

π
(ln ‖ · ‖K)

∧
(ξ),

as distributions (of the variable ξ) acting on test functions with compact support

outside of the origin. In particular,

i) if n is odd

(ln ‖x‖K)
∧

(ξ) = (−1)(n+1)/2πA
(n−1)
K,ξ (0), ξ ∈ R

n \ {0},

ii) if n is even, then for ξ ∈ R
n \ {0},

(ln ‖x‖K)
∧

(ξ)

= an

∫ ∞

0

AK,ξ(z) − AK,ξ(0) − A′′
K,ξ(0) z2

2 − · · · − An−2
K,ξ (z) zn−2

(n−2)!

zn
dz,

where an = 2(−1)n/2+1(n − 1)!

The support function of a convex body K in R
n is defined by

hK(x) = max
ξ∈K

(x, ξ), x ∈ R
n.

If K is origin-symmetric, then hK is the Minkowski norm of the polar body K∗.

Let voln−1(K|θ⊥) denote the (n − 1)-dimensional volume of the orthogonal

projection of the body K onto the hyperplane orthogonal to θ. The following

is the well-known Cauchy formula [G, p. 361]:

voln−1(K|θ⊥) =
1

2

∫

Sn−1

|(ξ, θ)|dSn−1(K, ξ),

where dSn−1(K, ξ) is the surface area measure of K ([G, p. 351]). A convex

body K is said to have a curvature function fK , if its surface area measure

dSn−1(K, ξ) is absolutely continuous with respect to Lebesgue measure dσn−1

on Sn−1 and
dSn−1(K, ·)

dσ
= fK(·) ∈ L1(Sn−1).

If K is an infinitely smooth body with positive curvature, then fK(θ) is the

reciprocal of the Gauss curvature at the boundary point with unit normal θ,

see [S2, p. 419]. Abusing notations, we will also denote by fK the extension of
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fK to R
n as a homogeneous function of degree −n − 1. Koldobsky, Ryabogin

and Zvavitch [KRZ1] proved that if a body K has a curvature function, then

(3) voln−1(K|θ⊥) = − 1

π
f̂K(θ), for all θ ∈ Sn−1.

Let ∆ be the Laplace operator on R
n. The fractional powers of the Laplacian

of a distribution g are defined by

(4) (−∆)α/2g =
1

(2π)n
(|x|α2 ĝ(x))∧,

where the Fourier transform is considered in the sense of distributions, and |x|2
stands for the Euclidean norm in R

n. Using the connection between the Fourier

transform and differentiation, one can see that for an even integer α and an even

distribution g this definition gives the standard Laplacian applied α/2 times.

If K is an infinitely smooth body with positive Gauss curvature, then fK is

an infinitely differentiable function on the sphere (because the Gauss curvature

is the determinant of the Weingarten map, which is infinitely differentiable

and non-singular in our case, see [S2, pp. 104–109]). Consider the projection

function voln−1(K|(·)⊥) and extend it from the sphere to R
n as a homogeneous

function of degree 1. Using (3) and (4), we get

(5) (−∆)α/2voln−1(K|θ⊥) = − 1

π
(|x|α2 fK(x))∧(θ).

Since |·|α2 fK is infinitely differentiable, (−∆)α/2voln−1(K|(·)⊥) is a continuous

function on the sphere ([K3, Lemma 3.16] or remark (i) after Theorem 2.2).

3. Main results

Let us start with a result in the positive direction.

Theorem 3.1: Let n ≤ α < n+1. Let K, L ⊂ R
n, n ≥ 3, be infinitely smooth

origin-symmetric convex bodies with positive Gauss curvature such that

(−∆)α/2voln−1(K|θ⊥) ≥ (−∆)α/2voln−1(L|θ⊥), for all θ ∈ Sn−1.

Then voln(K) ≤ voln(L).

Proof. Recall the following formula [G, p. 354]

voln(L) =
1

n

∫

Sn−1

hL(θ)fL(θ)dθ,
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where hL and fL are the support function and curvature function of the body

L correspondingly. Therefore, using the fact that hL = ‖ · ‖L∗ we get,

voln(L) =
1

n

∫

Sn−1

‖θ‖L∗fL(θ)dθ

=
1

n

∫

Sn−1

|θ|−α
2 ‖θ‖L∗ |θ|α2 fL(θ)dθ.

Since n ≤ α < n + 1, remark (ii) after Theorem 2.2 implies that the Fourier

transform of |x|−α
2 ‖x‖L∗ is a non-negative function on the sphere. Applying the

spherical version of Parseval’s formula (Lemma 2.1), we get

=
1

(2π)nn

∫

Sn−1

(|x|−α
2 ‖x‖L∗)∧(ξ)(|x|α2 fL(x))∧(ξ)dξ

= − π

(2π)nn

∫

Sn−1

(|x|−α
2 ‖x‖L∗)∧(ξ)(−∆)α/2voln−1(L|ξ⊥)dξ

≥− π

(2π)nn

∫

Sn−1

(|x|−α
2 ‖x‖L∗)∧(ξ)(−∆)α/2voln−1(K|ξ⊥)dξ

=
1

n

∫

Sn−1

‖θ‖L∗fK(θ)dθ =
1

n

∫

Sn−1

hL(θ)fK(θ)dθ

=V1(K, L),

where V1(K, L) is the mixed volume, also denoted by V (K, . . . , K, L), see [G,

p. 353], [S2, p. 275].

Therefore, we have V1(K, L) ≤ voln(L). Applying Minkowski’s first inequality

[S2, p. 317] we get

voln(L)
1
n voln(K)

n−1

n ≤ V1(K, L) ≤ voln(L),

and hence

voln(K) ≤ voln(L).

Remark: Comparing the previous theorem with the original Shephard problem,

one can observe that the inequality for the projections gets reversed. This

happens because the answer to Shephard’s problem is affirmative if L is a polar

projection body, that is the Fourier transform of ‖·‖L∗ is a negative distribution

outside of the origin, see [K3, pp. 155–160]. On the other hand, as we have seen,

if this norm is multiplied by the Euclidean norm to the appropriate power, then

the Fourier transform of |x|−α
2 ‖x‖L∗ becomes a positive distribution.
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Lemma 3.2: Let n− 2 ≤ α < n, α 6= 1. Then there exists an origin-symmetric

convex body L in R
n, n ≥ 3, such that |x|−α

2 ‖x‖L is not a positive definite

distribution.

Proof. First, consider the case n − 2 < α < n. For a large N > 0 let L be an

ellipsoid with the norm:

‖x‖L = (x2
1 + · · · + x2

n−1 + Nx2
n)1/2.

Define a star body K ⊂ R
n by the formula:

ρK(θ) = ρ
1

1−α

L (θ), θ ∈ Sn−1,

where ρK and ρL are the radial functions of the bodies K and L correspondingly.

One can see that

|x|−α
2 ‖x‖L =

(
|x|−α/(1−α)

2 ‖x‖1/(1−α)
L

)−α+1
= ‖x‖−α+1

K , for all x ∈ R
n \ {0}.

Using Theorem 2.2 with q = n − α ∈ (0, 2) we get

(‖x‖−α+1
K )∧(ξ) =

π(α − 1)

Γ(α − n) cos π(n−α)
2

∫ ∞

0

t−n+α−1(AK,ξ(t) − AK,ξ(0))dt,

where the case n−α = 1 is understood in the sense of part (c) of the aforemen-

tioned theorem.

Note that Γ(α − n) cos π(n−α)
2 ≤ 0 for α ∈ (n−2, n), where α = n−1 is again

understood in terms of the limit, so we need to prove that for some ξ

(6)

∫ ∞

0

t−n+α−1(AK,ξ(t) − AK,ξ(0))dt > 0.

Let ξ be the direction of the xn-axis. Let [−t0, t0] be the support of AK,ξ(t),

then

(7)∫ ∞

0

t−n+α−1(AK,ξ(t) − AK,ξ(0))dt

=

∫ t0

0

t−n+α−1(AK,ξ(t) − AK,ξ(0))dt −
∫ ∞

t0

t−n+α−1AK,ξ(0)dt

=

∫ t0

0

t−n+α−1(AK,ξ(t) − AK,ξ(0))dt − AK,ξ(0)

n − α
t−n+α
0 .

Introduce the following coordinates on the sphere Sn−1. Every θ ∈ Sn−1 can

be written as

θ = cosφ · ζ + sin φ · ξ,
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where −π/2 ≤ φ ≤ π/2 and ζ ∈ Sn−1 ∩ ξ⊥.

Since we are interested in the sections of K perpendicular to ξ, its axis of

revolution, by abuse of notation we will denote by ρK(φ) the radial function of

those θ ∈ Sn−1 that make an angle φ with the plane ξ⊥. Explicitly it equals

ρK(φ) = (cos2 φ + N sin2 φ)1/(2α−2).

One can check that t = sinφ · ρK(φ) is an increasing function of the angle

φ ∈ (0, π/2), therefore all the sections of K by hyperplanes orthogonal to ξ

are (n − 1)-dimensional disks. Moreover, one can see that t0 = N
1

2α−2 , which

implies that the last term in (7) approaches zero as N tends to infinity.

It will be more convenient to work with φ instead of t. AK,ξ as a function of

φ looks as follows.

AK,ξ(t(φ)) =ωn−1(cosφ · ρK(φ))n−1

=ωn−1(cosφ)n−1(cos2 φ + N sin2 φ)
n−1

2α−2 ,

where ωn−1 is the volume of the unit (n − 1)-dimensional Euclidean ball.

Now consider the integral term from (7). Making change of the variable

t = sin φ · (cos2 φ + N sin2 φ)1/(2α−2), we get

(8)∫ t0

0

t−n+α−1(AK,ξ(t) − AK,ξ(0))dt

=ωn−1

∫ π/2

0

(sin φ)−n+α−1(cos2 φ + N sin2 φ)
−n+α−1

2α−2

×
(
(cosφ)n−1(cos2 φ + N sin2 φ)

n−1

2α−2 − 1
)

× (cos2 φ+N sin2 φ)
1

2α−2
−1(cos3 φ + (N +

N − 1

α − 1
) cosφ sin2 φ)dφ.

Now we want to find the intervals where the integrand is positive or negative.

So we need to solve the equation

(cosφ)n−1(cos2 φ + N sin2 φ)
n−1

2α−2 − 1 = 0,

which is equivalent to

(9) (cosφ)2α + N(cosφ)2α−2 sin2 φ = 1.

By showing that the function in the left hand side is first increasing and then

decreasing to zero, one can see that the equation has two roots on the interval

[0, π/2]. One root is obvious: φ1 = 0. In order to determine the second root
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φ2, note that the maximum of the function in question is achieved when φ is

roughly arccos
√

1 − 1/α, assuming N is large. Therefore (9) together with the

inequality φ2 & arccos
√

1 − 1/α gives

N(cosφ2)
2α−2 ≤ C(α),

and hence φ2 = π/2 − o(N
1

2−2α ).

Now break the integral (8) into two parts according to where the integrand

is positive or negative. It is negative on the interval (π/2 − o(N
1

2−2α ), π/2)

and one can easily show that the absolute value of the integral here is bounded

above by

CN
α−n−2

2α−2 ,

which approaches zero as N tends to infinity.

In order to estimate from below the positive part of the integral (8) it is

enough to consider the interval [π/4, π/3]. One can check that when N is large,

the integral has order

CN1/2,

which approaches infinity as N gets large. The inequality (6) follows.

Now consider α = n − 2. In this case Theorem 2.2 gives

(‖x‖−α+1
K )∧(ξ) = π(1 − α)A

′′

K,ξ(0) < 0.

The latter inequality follows by direct computation.

The previous Lemma says nothing about the case when α = 1 (and therefore

n = 3). It may seem that the right analog would be to analyze the sign of

(|x|−1
2 ‖x‖L + ln |x|2)∧. But in fact, as one will see later, the following result is

needed.

Lemma 3.3: There exists an origin-symmetric convex body L in R
3, such that

the Fourier transform of

|x|−1
2 ‖x‖L −

∫
S2 ‖θ‖Ldθ

4π(1 + Γ′(1))
ln |x|2

is not a positive distribution outside of the origin. Here Γ′ is the derivative of

the Gamma-function.

Proof. For N > 0 large enough consider the following planar curve defined in

polar coordinates by

ρ(φ) = cosN φ.(10)
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Take only that part of the curve where the angle φ belongs to the interval
[
− arcsin

1√
N + 1

, arcsin
1√

N + 1

]
.

One can check that the end-points of the interval correspond to the extreme

values of the y-coordinate (altitude). Rotate this arc around the y-axis and

then attach two disks at the top and bottom to get a closed surface. Denote by

L the convex body bounded by this surface. Consider a star body K given by

the formula

‖θ‖K = exp(‖θ‖L), θ ∈ S2.

Therefore the radial function of K equals

ρK(θ) = exp(−ρ−1
L (θ)), θ ∈ S2.

One can also see that

ln ‖x‖K = |x|−1
2 ‖x‖L + ln |x|2, x ∈ R

3 \ {0}.

Let ξ be the direction of the axis of revolution of L. Since n = 3, by Theorem

2.3 we have

(ln ‖x‖K)
∧

(ξ) = πA
′′

K,ξ(0).

(In fact, this formula can only be applied if the body is smooth enough, but let

us ignore this problem for a while and address it at the end of the proof.)

If we denote by ρK(φ) the radial function of those θ ∈ S2 that make an angle

φ with the plane ξ⊥, then

AK,ξ(φ) = π(cosφ · ρK(φ))2 = π cos2 φ · exp(−2ρ−1
L (φ)).

Using that for small φ the function ρL is given by formula (10) we get

(11) A
′′

K,ξ(0) = −2πe−2(N − 1).

On the other hand, from the construction of the body L it follows that L has

smallest radius in the direction of ξ. Therefore for all θ ∈ S2,

ρL(θ) ≥ ρL(ξ) =
(
cosN φ sin φ

)
|φ=arcsin 1√

N+1

' C1√
N + 1

,

which implies ∫

S2

‖θ‖Ldθ ≤ C2

√
N + 1,

for some constants C1 , C2 > 0.
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Also notice that part (i) of Theorem 2.3 gives

(ln |x|2)∧(θ) = −2π2, for all θ ∈ S2.

Therefore, we have

(
|x|−1

2 ‖x‖L −
∫

S2 ‖θ‖Ldθ

4π(1 + Γ′(1))
ln |x|2

)∧
(ξ)

=
(

ln ‖x‖K − 1 + Γ′(1) + 1
4π

∫
S2 ‖θ‖Ldθ

1 + Γ′(1)
ln |x|2

)∧
(ξ)

= −2πe−2(N − 1) + 2π2 1 + Γ′(1) + 1
4π

∫
S2 ‖θ‖Ldθ

1 + Γ′(1)

≤ −2πe−2(N − 1) + C
√

N + 1 < 0,

for N > 0 large enough.

Formally the above computations are not quite legitimate since L is not in-

finitely smooth. But one can approximate L by an origin-symmetric infinitely

smooth convex body without loosing the sign in the last inequality. Specifically,

one has to smooth out the body in a small neighborhood of φ = arcsin 1√
N+1

.

This operation will not affect (11). On the other hand one can also assure that∫
S2 ‖θ‖Ldθ does not change much.

Theorem 3.4: Let n − 2 ≤ α < n. There are convex origin-symmetric bodies

K, L ⊂ R
n, n ≥ 3 such that

(12) (−∆)α/2voln−1(L|θ⊥) ≤ (−∆)α/2voln−1(K|θ⊥), for all θ ∈ Sn−1,

but

voln(L) < voln(K).

Proof. First assume that α 6= 1. Lemma 3.2 guarantees that there exists an

ellipsoid K∗, such that (|x|−α
2 ‖x‖K∗)∧(ξ) < 0 for some direction ξ. Let K be

the polar body of K∗. Since K is again an ellipsoid, its curvature function fK

is well-defined.

Let Ω = {θ ∈ Sn−1 : (|x|−α
2 ‖x‖K∗)∧(θ) < 0} and let v ∈ C∞(Sn−1) be

a non-negative even function supported in Ω. Extend v to a homogeneous

function |x|1−α
2 v(x/|x|2) of degree 1 − α on R

n. By [K1, Lemma 5] the Fourier

transform of |x|1−α
2 v(x/|x|2) is equal to |x|−n−1+α

2 g(x/|x|2) for some function

g ∈ C∞(Sn−1). Choose an ε > 0 small enough and define

fL(x) = fK(x) + ε|x|−n−1
2 g(x/|x|2) > 0.
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By Minkowski’s existence theorem [G, p. 356] there is a convex origin-symmetric

body L ∈ R
n with such defined curvature function. Now multiply both sides

by |x|α2 and apply the Fourier transform to get

−π(−∆)α/2voln−1(L|θ⊥) = −π(−∆)α/2voln−1(K|θ⊥) + (2π)nεv(θ)

≥ −π(−∆)α/2voln−1(K|θ⊥).

On the other hand,

−π

∫

Sn−1

(|x|−α
2 ‖x‖K∗)∧(θ)(−∆)α/2voln−1(L|θ⊥)dθ

= − π

∫

Sn−1

(|x|−α
2 ‖x‖K∗)∧(θ)(−∆)α/2voln−1(K|θ⊥)dθ

+ (2π)nε

∫

Sn−1

(|x|−α
2 ‖x‖K∗)∧(θ)v(θ)dθ

< − π

∫

Sn−1

(|x|−α
2 ‖x‖K∗)∧(θ)(−∆)α/2voln−1(K|θ⊥)dθ,

where the last inequality follows from the fact that v is supported in the set,

where (|x|−α
2 ‖x‖K∗)∧ < 0.

Using the argument from Theorem 3.1 we get that

voln(L) < voln(K).

In order to prove the remaining case when α = 1, we need two lemmas. The

following lemma is from [YY, Lemma 3.3], see also [KKYY].

Lemma 3.5: Let K be an infinitely smooth origin-symmetric star body in R
n.

Then

(13) ln ‖x‖K = − 1

(2π)n

∫

Sn−1

ln |(x, ξ)| (ln ‖x‖K)
∧

(ξ)dξ + CK ,

where

CK =
1

|Sn−1|

∫

Sn−1

ln ‖x‖Kdx − 1

2
√

π
Γ′(1/2) +

1

2

Γ′(n/2)

Γ(n/2)
.

Moreover,

(14)

∫

Sn−1

(ln ‖x‖K)
∧

(ξ)dξ = −(2π)n.

The following result is from [YY, Lemma 3.7]. It is not stated in this form

there, but follows from the proof.
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Lemma 3.6: Let K be an origin-symmetric star body in R
n, then the Fourier

transform of ‖x‖−n
K is a continuous function on R

n \ {0}, which equals

(15) (‖x‖−n
K )∧(ξ) =

∫

Sn−1

‖θ‖−n
K

(
Γ′(1) − ln |(θ, ξ)|

)
dθ.

Now we are able to prove the remaining case of the theorem, when α = 1

(and therefore n = 3). By Lemma 3.3 there exists an infinitely smooth origin-

symmetric convex body K∗ in R
3 such that for some ξ ∈ S2

(
|x|−1

2 ‖x‖K∗ −
∫

S2 ‖θ‖K∗dθ

4π(1 + Γ′(1))
ln |x|2

)∧

(ξ) < 0.

Let K be the polar body of K∗. By approximation we can assume that K is

infinitely smooth with strictly positive curvature, see [S2, pp. 158–160].

Let

Ω = {θ ∈ S2 :

(
|x|−1

2 ‖x‖K∗ −
∫

S2 ‖θ‖K∗dθ

4π(1 + Γ′(1))
ln |x|2

)∧

(θ) < 0}

and let v ∈ C∞(S2) be an even function, 0 < v ≤ 1, not identically equal to

1, and such that v = 1 in S2 \ Ω. We will also use the fact that Γ′(1) > −1 to

impose an additional condition on v:

1

4π

∫

S2

ln v(θ)dθ = −1 − Γ′(1).

Note that the latter equality can be written in the form

(16) Cv + Γ′(1) = 0,

where Cv is the constant from Lemma 3.5.

Extend v from the sphere to R
3 as a homogeneous function of degree 1, and

denote this extension also by v. By Theorem 2.3 the Fourier transform of ln v(x)

outside of the origin is equal to |x|−3
2 g(x/|x|2) for some function g ∈ C∞(S2).

Choose an ε > 0 small enough and define

fL(x) = fK(x) − ε|x|−4
2 g(x/|x|2) > 0.

By Minkowski’s existence theorem there is a convex symmetric body L ⊂ R
3

with such defined curvature function. Now multiply both sides by |x|2 and

apply the Fourier transform to get

−π(−∆)α/2vol2(L|ξ⊥) = −π(−∆)α/2vol2(K|ξ⊥) − (2π)3ε(|x|−3
2 g(x/|x|2))∧(ξ)

≥ −π(−∆)α/2vol2(K|ξ⊥),
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where the last inequality comes from the following calculations, based on Lem-

mas 3.6 and 3.5.

(
|x|−3

2 g(x/|x|2)
)∧

(ξ) =

∫

S2

g(θ)(Γ′(1) − ln |(θ, ξ)|)dθ

=

∫

S2

(ln v(x))∧ (θ)(Γ′(1) − ln |(θ, ξ)|)dθ

= −(2π)3Γ′(1) −
∫

S2

(ln v(x))∧ (θ) ln |(θ, ξ)|dθ

= −(2π)3Γ′(1) + (2π)3(ln v(ξ) − Cv) = (2π)3 ln v(ξ) ≤ 0.

On the other hand,

V1(L, K) =
1

3

∫

S2

‖θ‖K∗fL(θ)dθ =
1

3

∫

S2

‖θ‖K∗(fK(θ) − εg(θ))dθ

= vol3(K) − ε

3

∫

S2

‖θ‖K∗g(θ)dθ.

If we can show that
∫

S2 ‖θ‖K∗g(θ)dθ > 0, the statement will follow from

Minkowski’s first inequality. Let ‖θ‖M = exp ‖θ‖K∗ for all θ ∈ S2. By Lemma

3.5 we have

‖θ‖K∗ = ln ‖θ‖M = − 1

(2π)3

∫

S2

ln |(θ, ξ)|(ln ‖x‖M )∧(ξ)dξ + CM ,

where

(17) CM =
1

4π

∫

S2

ln ‖θ‖Mdθ + 1 =
1

4π

∫

S2

‖θ‖K∗dθ + 1.

Analogously,

ln |θ|2 = − 1

(2π)3

∫

S2

ln |(θ, ξ)|(ln |x|2)∧(ξ)dξ + 1.

Let us denote

λ =
CM + Γ′(1)

1 + Γ′(1)
.
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Then
∫

S2

‖θ‖K∗g(θ)dθ

=

∫

S2

(ln ‖θ‖M − λ ln |θ|2) g(θ)dθ

= − 1

(2π)3

∫

S2

(∫

S2

ln |(θ, ξ)| (ln ‖x‖M − λ ln |x|2)∧ (ξ)dξ

)
g(θ)dθ

+ (CM − λ)

∫

S2

g(θ)dθ.

Reversing the order of integration in the first integral and then adding and

subtracting an appropriate quantity, we get

=
1

(2π)3

∫

S2

(∫

S2

(Γ′(1) − ln |(θ, ξ)|) g(θ)dθ

)
(ln ‖x‖M − λ ln |x|2)∧ (ξ)dξ

− Γ′(1)

(2π)3

∫

S2

(∫

S2

g(θ)dθ

)
(ln ‖x‖M − λ ln |x|2)∧ (ξ)dξ+(CM − λ)

∫

S2

g(θ)dθ.

Formulas (15) and (14) applied to the first and second integrals correspondingly

give

=
1

(2π)3

∫

S2

(
|x|−3

2 g(x/|x|2)
)∧

(ξ) (ln ‖x‖M − λ ln |x|2)∧ (ξ)dξ

+ Γ′(1)(1 − λ)

∫

S2

g(θ)dθ + (CM − λ)

∫

S2

g(θ)dθ.

Using that
(
|x|−3

2 g(x/|x|2)
)∧

(ξ) = (2π)3 ln v(ξ)

and

Γ′(1)(1 − λ) + (CM − λ) = 0,

we get

(18)

∫

S2

‖θ‖K∗g(θ)dθ =

∫

S2

ln v(ξ) (ln ‖x‖M − λ ln |x|2)∧ (ξ)dξ.

Recall that

ln ‖x‖M − λ ln |x|2 =|x|−1
2 ‖x‖K∗ + ln |x|2 −

1
4π

∫
S2 ‖θ‖K∗dθ + 1 + Γ′(1)

1 + Γ′(1)
ln |x|2

=|x|−1
2 ‖x‖K∗ −

∫
S2 ‖θ‖K∗dθ

4π(1 + Γ′(1))
ln |x|2.
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Therefore, (18) implies ∫

S2

‖θ‖K∗g(θ)dθ > 0,

since ln v is negative, where

(
|x|−1

2 ‖x‖K∗ −
∫

S2 ‖θ‖K∗dθ

4π(1 + Γ′(1))
ln |x|2

)∧

is negative, and zero everywhere else.

Remark: The aim of Theorem 3.4 is to show that condition (12) is inconclusive.

As we have seen, there are bodies for which (12) holds, but voln(L) < voln(K).

Let us remark that one can easily find two bodies for which (12) holds, but

voln(L) > voln(K). It is enough to take two Euclidean balls. This is obvious

for α > 1, but probably some explanations are needed for the case α = 1 (and

n = 3).

Let B be a Euclidean ball in R
3 with curvature function fB(θ) = C, for all

θ ∈ S2. Then by (5) and (15) we have

(−∆)1/2vol2(B|ξ⊥) = − 1

π
(|x|2fB(x))∧(θ) = − 1

π
(|x|2C|x|−4

2 )∧(θ)

= −C

π

∫

S2

(
Γ′(1) − ln |(θ, ξ)|

)
dξ.

The latter integral is computable and after routine calculations one gets

(−∆)1/2vol2(B|ξ⊥) = −4C(Γ′(1) + 1) < 0.

Therefore, if we take two Euclidean balls Br and BR with radii r < R, then

fBr
< fBR

and therefore

(−∆)1/2vol2(BR|ξ⊥) < (−∆)1/2vol2(Br|ξ⊥),

but

vol3(Br) < vol3(BR).
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